Eureka Math ${ }^{\text {TM }}$

Grade 3, Module 2

Student File_B

Contains Sprint and Fluency, Exit Ticket, and Assessment Materials

```
Published by Great Minds \({ }^{\circledR}\).
Copyright © 2015 Great Minds. No part of this work may be reproduced or used in any form or by any means graphic, electronic, or mechanical, including photocopying or information storage and retrieval systems without written permission from the copyright holder.
Printed in the U.S.A.
This book may be purchased from the publisher at eureka-math.org
10

Sprint and Fluency Packet

Number Correct: \(\qquad\)

Find the Halfway Point
\begin{tabular}{|c|c|c|c|}
\hline 1. & 0 & _ & 10 \\
\hline 2. & 10 & & 20 \\
\hline 3. & 20 & & 30 \\
\hline 4. & 70 & - & 80 \\
\hline 5. & 80 & & 70 \\
\hline 6. & 40 & [ & 50 \\
\hline 7. & 50 & - & 40 \\
\hline 8. & 30 & & 40 \\
\hline 9. & 40 & - & 30 \\
\hline 10. & 70 & - & 60 \\
\hline 11. & 60 & & 70 \\
\hline 12. & 80 & - & 90 \\
\hline 13. & 90 & - & 100 \\
\hline 14. & 100 & & 90 \\
\hline 15. & 90 & & 80 \\
\hline 16. & 50 & & 60 \\
\hline 17. & 150 & & 160 \\
\hline 18. & 250 & & 260 \\
\hline 19. & 750 & & 760 \\
\hline 20. & 760 & & 750 \\
\hline 21. & 80 & \(\underline{\square}\) & 90 \\
\hline 22. & 180 & & 190 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 23. & 280 &  & 290 \\
\hline 24. & 580 & \(\underline{\square}\) & 590 \\
\hline 25. & 590 & & 580 \\
\hline 26. & 30 & & 40 \\
\hline 27. & 930 & - & 940 \\
\hline 28. & 70 & - & 60 \\
\hline 29. & 470 & & 460 \\
\hline 30. & 90 & - & 100 \\
\hline 31. & 890 & - & 900 \\
\hline 32. & 990 & [ & 1,000 \\
\hline 33. & 1,000 & & 1,010 \\
\hline 34. & 70 & - & 80 \\
\hline 35. & 1,070 & - & 1,080 \\
\hline 36. & 1,570 & & 1,580 \\
\hline 37. & 480 & & 490 \\
\hline 38. & 1,480 & & 1,490 \\
\hline 39. & 1,080 & & 1,090 \\
\hline 40. & 360 & & 350 \\
\hline 41. & 1,790 & & 1,780 \\
\hline 42. & 400 & & 390 \\
\hline 43. & 1,840 & - & 1,830 \\
\hline 44. & 1,110 & - & 1,100 \\
\hline
\end{tabular} Lesson 14: Round to the nearest hundred on the vertical number line.

Number Correct: \(\qquad\)
Improvement: \(\qquad\)
Find the Halfway Point
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1. & 10 & - & 20 & 23. & 270 & 280 \\
\hline 2. & 20 &  & 30 & 24. & 670 & 680 \\
\hline 3. & 30 & , & 40 & 25. & 680 & 670 \\
\hline 4. & 60 & & 70 & 26. & 20 & 30 \\
\hline 5. & 70 & & 60 & 27. & 920 & 930 \\
\hline 6. & 50 & & 60 & 28. & 60 & 50 \\
\hline 7. & 60 & - & 50 & 29. & 460 & 450 \\
\hline 8. & 40 & & 50 & 30. & 90 & 100 \\
\hline 9. & 50 &  & 40 & 31. & 890 & 900 \\
\hline 10. & 80 & & 70 & 32. & 990 & 1,000 \\
\hline 11. & 70 &  & 80 & 33. & 1,000 & 1,010 \\
\hline 12. & 80 & & 90 & 34. & 20 & 30 \\
\hline 13. & 90 & & 100 & 35. & 1,020 & 1,030 \\
\hline 14. & 100 & & 90 & 36. & 1,520 & 1,530 \\
\hline 15. & 90 & & 80 & 37. & 380 & 390 \\
\hline 16. & 60 & & 70 & 38. & 1,380 & 1,390 \\
\hline 17. & 160 & & 170 & 39. & 1,080 & 1,090 \\
\hline 18. & 260 & & 270 & 40. & 760 & 750 \\
\hline 19. & 560 & & 570 & 41. & 1,690 & 1,680 \\
\hline 20. & 570 & & 560 & 42. & 300 & 290 \\
\hline 21. & 70 & - & 80 & 43. & 1,850 & 1,840 \\
\hline 22. & 170 & & 180 & 44. & 1,220 & 1,210 \\
\hline
\end{tabular}

EUREKA

Number Correct: \(\qquad\)

\section*{Round to the Nearest Ten}
\begin{tabular}{|c|c|c|}
\hline 1. & \(21 \approx\) & \\
\hline 2. & \(31 \approx\) & \\
\hline 3. & \(41 \approx\) & \\
\hline 4. & \(81 \approx\) & \\
\hline 5. & 59 ~ & \\
\hline 6. & 49 ~ & \\
\hline 7. & 39 ~ & \\
\hline 8. & 19 ~ & \\
\hline 9. & \(36 \approx\) & \\
\hline 10. & \(34 \approx\) & \\
\hline 11. & \(56 \sim\) & \\
\hline 12. & \(54 \approx\) & \\
\hline 13. & 77 ~ & \\
\hline 14. & 73 ~ & \\
\hline 15. & 68 ~ & \\
\hline 16. & 62 ~ & \\
\hline 17. & \(25 \approx\) & \\
\hline 18. & \(35 \sim\) & \\
\hline 19. & \(45 \approx\) & \\
\hline 20. & \(75 \approx\) & \\
\hline 21. & \(85 \sim\) & \\
\hline 22. & \(15 \approx\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 23. & 79 ~ & \\
\hline 24. & 89 ~ & \\
\hline 25. & \(99 \sim\) & \\
\hline 26. & 109 ~ & \\
\hline 27. & 119 ~ & \\
\hline 28. & 149 ~ & \\
\hline 29. & 311 ~ & \\
\hline 30. & 411 ~ & \\
\hline 31. & 519 ~ & \\
\hline 32. & 619 ~ & \\
\hline 33. & 629 ~ & \\
\hline 34. & 639 ~ & \\
\hline 35. & 669 ~ & \\
\hline 36. & 969 ~ & \\
\hline 37. & 979 ~ & \\
\hline 38. & 989 ~ & \\
\hline 39. & 999 ~ & \\
\hline 40. & 1,109 \(\sim\) & \\
\hline 41. & 1,119 \(\sim\) & \\
\hline 42. & 3,227 \(\sim\) & \\
\hline 43. & 5,487 \(\approx\) & \\
\hline 44. & 7,885 \(\sim\) & \\
\hline
\end{tabular}

\section*{B}

Number Correct: \(\qquad\)
Improvement: \(\qquad\)
Round to the Nearest Ten
\begin{tabular}{|c|c|c|}
\hline 1. & \(11 \approx\) & \\
\hline 2. & \(21 \approx\) & \\
\hline 3. & 31 ~ & \\
\hline 4. & \(71 \approx\) & \\
\hline 5. & \(69 \sim\) & \\
\hline 6. & \(59 \approx\) & \\
\hline 7. & 49 ~ & \\
\hline 8. & 19 ~ & \\
\hline 9. & \(26 \approx\) & \\
\hline 10. & \(24 \approx\) & \\
\hline 11. & \(46 \approx\) & \\
\hline 12. & \(44 \approx\) & \\
\hline 13. & 87 ~ & \\
\hline 14. & 83 ~ & \\
\hline 15. & 78 ~ & \\
\hline 16. & 72 ~ & \\
\hline 17. & \(15 \approx\) & \\
\hline 18. & \(25 \approx\) & \\
\hline 19. & \(35 \approx\) & \\
\hline 20. & \(75 \approx\) & \\
\hline 21. & \(85 \sim\) & \\
\hline 22. & \(45 \approx\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 23. & 79 ~ & \\
\hline 24. & 89 ~ & \\
\hline 25. & \(99 \sim\) & \\
\hline 26. & 109 ~ & \\
\hline 27. & 119 ~ & \\
\hline 28. & 159 ~ & \\
\hline 29. & 211 ~ & \\
\hline 30. & 311 ~ & \\
\hline 31. & 418 ~ & \\
\hline 32. & 518 ~ & \\
\hline 33. & 528 ~ & \\
\hline 34. & 538 ~ & \\
\hline 35. & 568 ~ & \\
\hline 36. & 968 ~ & \\
\hline 37. & 978 ~ & \\
\hline 38. & 988 ~ & \\
\hline 39. & 998 ~ & \\
\hline 40. & 1,108 ~ & \\
\hline 41. & 1,118 \(\sim\) & \\
\hline 42. & 2,337 \(\sim\) & \\
\hline 43. & 4,578 ~ & \\
\hline 44. & 8,785 \(\sim\) & \\
\hline
\end{tabular}

\section*{A}

Number Correct: \(\qquad\)

Round to the Nearest Hundred
\begin{tabular}{|c|c|c|c|c|}
\hline 1. & 201 ~ & 23. & 350 ~ & \\
\hline 2. & 301 ~ & 24. & 1,350 \(\sim\) & \\
\hline 3. & 401 ~ & 25. & 450 ~ & \\
\hline 4. & 801 ~ & 26. & 5,450 \(\sim\) & \\
\hline 5. & 1,801 ~ & 27. & 850 ~ & \\
\hline 6. & 2,801 \(\sim\) & 28. & 6,850 \(\sim\) & \\
\hline 7. & 3,801 \(\sim\) & 29. & 649 ~ & \\
\hline 8. & 7,801 \(\sim\) & 30. & 651 ~ & \\
\hline 9. & \(290 \sim\) & 31. & 691 ~ & \\
\hline 10. & 390 ~ & 32. & 791 ~ & \\
\hline 11. & \(490 \sim\) & 33. & 891 ~ & \\
\hline 12. & \(890 \sim\) & 34. & 991 ~ & \\
\hline 13. & 1,890 \(\sim\) & 35. & 995 ~ & \\
\hline 14. & 2,890 \(\sim\) & 36. & 998 ~ & \\
\hline 15. & 3,890 \(\sim\) & 37. & 9,998 \(\sim\) & \\
\hline 16. & 7,890 \(\sim\) & 38. & 7,049 \(\sim\) & \\
\hline 17. & 512 ~ & 39. & 4,051 \(\sim\) & \\
\hline 18. & 2,512 \(\sim\) & 40. & 8,350 \(\sim\) & \\
\hline 19. & 423 ~ & 41. & 3,572 \(\sim\) & \\
\hline 20. & 3,423 \(\sim\) & 42. & 9,754 \(\sim\) & \\
\hline 21. & 677 ~ & 43. & 2,915 \(\sim\) & \\
\hline 22. & 4,677 \(\sim\) & 44. & 9,996 \(\sim\) & \\
\hline
\end{tabular}

\section*{B}

Number Correct: \(\qquad\)
Improvement: \(\qquad\)
Round to the Nearest Hundred
\begin{tabular}{|c|c|c|}
\hline 1. & 101 ~ & \\
\hline 2. & 201 ~ & \\
\hline 3. & 301 ~ & \\
\hline 4. & 701 ~ & \\
\hline 5. & 1,701 \(\sim\) & \\
\hline 6. & 2,701 \(\sim\) & \\
\hline 7. & 3,701 \(\sim\) & \\
\hline 8. & 8,701 ~ & \\
\hline 9. & 190 ~ & \\
\hline 10. & 290 ~ & \\
\hline 11. & 390 ~ & \\
\hline 12. & 790 ~ & \\
\hline 13. & 1,790 \(\sim\) & \\
\hline 14. & 2,790 \(\approx\) & \\
\hline 15. & 3,790 \(\approx\) & \\
\hline 16. & 8,790 \(\sim\) & \\
\hline 17. & 412 ~ & \\
\hline 18. & 2,412 \(\sim\) & \\
\hline 19. & 523 ~ & \\
\hline 20. & 3,523 \(\sim\) & \\
\hline 21. & 877 ~ & \\
\hline 22. & 4,877 \(\approx\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 23. & 250 ~ & \\
\hline 24. & 1,250 \(\sim\) & \\
\hline 25. & 350 ~ & \\
\hline 26. & 5,350 \(\sim\) & \\
\hline 27. & 750 ~ & \\
\hline 28. & 6,750 & \\
\hline 29. & 649 ~ & \\
\hline 30. & 652 ~ & \\
\hline 31. & 692 ~ & \\
\hline 32. & 792 ~ & \\
\hline 33. & 892 ~ & \\
\hline 34. & 992 ~ & \\
\hline 35. & 996 ~ & \\
\hline 36. & 999 ~ & \\
\hline 37. & 9,999 & \\
\hline 38. & 4,049 \(\sim\) & \\
\hline 39. & 2,051 \(\sim\) & \\
\hline 40. & 7,350 & \\
\hline 41. & 4,572 & \\
\hline 42. & 8,754 \(\sim\) & \\
\hline 43. & 3,915 \(\approx\) & \\
\hline 44. & 9,997 \(\sim\) & \\
\hline
\end{tabular}

Exit Ticket Packet

Name \(\qquad\)
The table to the right shows how much time it takes each of the 5 students to do 15 jumping jacks.
a. Who finished 15 jumping jacks the fastest?

Date \(\qquad\)
\begin{tabular}{|c|c|}
\hline Maya & 16 seconds \\
\hline Riley & 15 seconds \\
\hline Jake & 14 seconds \\
\hline Nicholas & 15 seconds \\
\hline Adeline & 17 seconds \\
\hline
\end{tabular}
b. Who finished their jumping jacks in the exact same amount of time?
c. How many seconds faster did Jake finish than Adeline?

Name \(\qquad\) Date \(\qquad\)

The number line below shows a math class that begins at 10:00 a.m. and ends at 11:00 a.m. Use the number line to answer the following questions.

a. What time do Sprints begin?
b. What time do students begin the Application Problem?
c. What time do students work on the Exit Ticket?
d. How long is math class?

Name \(\qquad\) Date \(\qquad\)

The clock shows what time Jason gets to school in the morning.
a. What time does Jason get to school?

b. The first bell rings at 8:23 a.m. Draw hands on the clock to show when the first bell rings.

First Bell Rings

c. Label the first and last tick marks 8:00 a.m. and 9:00 a.m. Plot a point to show when Jason arrives at school. Label it \(A\). Plot a point on the line when the first bell rings and label it \(B\).


Name \(\qquad\) Date \(\qquad\)
Independent reading time starts at 1:34 p.m. It ends at 1:56 p.m.
1. Draw the start time on the clock below.

2. Draw the end time on the clock below.

3. How many minutes does independent reading time last?

Name \(\qquad\) Date \(\qquad\)
Michael spends 19 minutes on his math homework and 17 minutes on his science homework.
How many minutes does Michael spend doing his homework?

Model the problem on the number line, and write an equation to solve.


Michael spends \(\qquad\) minutes on his homework.
\(\qquad\)

Ten bags of sugar weigh 1 kilogram. How many grams does each bag of sugar weigh?

Name \(\qquad\) Date \(\qquad\)
1. Read and write the weights below. Write the word kilogram or gram with the measurement.

2. Circle the correct unit of weight for each estimation.
a. An orange weighs about 200 (grams / kilograms).
b. A basketball weighs about 624 (grams / kilograms).
c. A brick weighs about 2 (grams / kilograms).
d. A small packet of sugar weighs about 4 (grams / kilograms).
e. A tiger weighs about 190 (grams / kilograms).

Name \(\qquad\) Date \(\qquad\)

The weights of a backpack and suitcase are shown below.

a. How much heavier is the suitcase than the backpack?
b. What is the total weight of 4 identical backpacks?
c. How many backpacks weigh the same as one suitcase?
\(\qquad\)
1. Morgan fills a 1-liter jar with water from the pond. She uses a 100-milliliter cup to scoop water out of the pond and pour it into the jar. How many times will Morgan scoop water from the pond to fill the jar?
2. How many groups of 10 milliliters are in 1 liter? Explain.
\(\qquad\) groups of 10 milliliters in 1 liter.

\section*{Name}
\(\qquad\) Date \(\qquad\)
1. Use the number line to record the capacity of the containers.
\begin{tabular}{|c|l|}
\hline Container & Capacity in Liters \\
\hline A & \\
\hline B & \\
\hline C & \\
\hline
\end{tabular}

2. What is the difference between the capacity of Container A and Container C?

\section*{Name}
\(\qquad\) Date \(\qquad\)

The capacities of three cups are shown below.


Cup A
160 mL


Cup B
280 mL


Cup C 237 mL
a. Find the total capacity of the three cups.
b. Bill drinks exactly half of Cup B. How many milliliters are left in Cup B?
c. Anna drinks 3 cups of tea from Cup A. How much tea does she drink in total?

\section*{Name}
\(\qquad\) Date \(\qquad\)
The weight of a golf ball is shown below.

a. The golf ball weighs \(\qquad\) .
b. Round the weight of the golf ball to the nearest ten grams. Model your thinking on the number line.
c. The golf ball weighs about \(\qquad\) .
d. Explain how you used the halfway point on the number line to round to the nearest ten grams.

Name \(\qquad\) Date \(\qquad\)
1. Round to the nearest ten. Use the number line to model your thinking.

2. Bobby rounds 603 to the nearest ten. He says it is 610 . Is he correct? Why or why not? Use a number line and words to explain your answer.

Name \(\qquad\) Date \(\qquad\)
1. Round to the nearest hundred. Use the number line to model your thinking.

2. There are 685 people at the basketball game. Draw a vertical number line to round the number of people to the nearest hundred people.
\(\qquad\)
1. Find the sums below. Choose mental math or the algorithm.
a. \(24 \mathrm{~cm}+36 \mathrm{~cm}\)
b. \(562 \mathrm{~m}+180 \mathrm{~m}\)
c. \(345 \mathrm{~km}+239 \mathrm{~km}\)
2. Brianna jogs 15 minutes more on Sunday than Saturday. She jogged 26 minutes on Saturday.
a. How many minutes does she jog on Sunday?
b. How many minutes does she jog in total?

\section*{Name}
\(\qquad\) Date \(\qquad\)
1. Find the sums.
a. \(78 \mathrm{~g}+29 \mathrm{~g}\)
b. \(328 \mathrm{~kg}+289 \mathrm{~kg}\)
c. \(509 \mathrm{~L}+293 \mathrm{~L}\)
2. The third-grade class sells lemonade to raise funds. After selling 58 liters of lemonade in 1 week, they still have 46 liters of lemonade left. How many liters of lemonade did they have at the beginning?
\(\qquad\)

Jesse practices the trumpet for a total of 165 minutes during the first week of school. He practices for 245 minutes during the second week.
a. Estimate the total amount of time Jesse practices by rounding to the nearest 10 minutes.
b. Estimate the total amount of time Jesse practices by rounding to the nearest 100 minutes.
c. Explain why the estimates are so close to each other.

\section*{Name}
\(\qquad\) Date \(\qquad\)
1. Solve the subtraction problems below.
a. \(381 \mathrm{~mL}-146 \mathrm{~mL}\)
b. \(730 \mathrm{~m}-426 \mathrm{~m}\)
c. \(509 \mathrm{~kg}-384 \mathrm{~kg}\)
2. The total length of a banner is 408 centimeters. Carly paints it in 3 sections. The first 2 sections she paints are 187 centimeters long altogether. How long is the third section?


Date \(\qquad\)
1. Solve the subtraction problems below.
a. \(346 m-187 m\)
b. \(700 \mathrm{~kg}-592 \mathrm{~kg}\)
2. The farmer's sheep weighs 647 kilograms less than the farmer's cow. The cow weighs 725 kilograms. How much does the sheep weigh?

Name \(\qquad\) Date \(\qquad\)

Kathy buys a total of 416 grams of frozen yogurt for herself and a friend. She buys 1 large cup and 1 small cup.

\begin{tabular}{|c|c|}
\hline Large Cup & 363 grams \\
\hline Small Cup & ? grams \\
\hline
\end{tabular}
a. Estimate how many grams are in the small cup of yogurt by rounding.
b. Estimate how many grams are in the small cup of yogurt by rounding in a different way.
c. How many grams are actually in the small cup of yogurt?
d. Is your answer reasonable? Which estimate was closer to the exact weight? Explain why.
\(\qquad\)
Rogelio drinks water at every meal. At breakfast, he drinks 237 milliliters. At lunch, he drinks 300 milliliters. At dinner, he drinks 177 milliliters.
a. Estimate the total amount of water Rogelio drinks. Then, find the actual amount of water he drinks at all three meals.
b. Estimate how much more water Rogelio drinks at lunch than at dinner. Then, find how much more water Rogelio actually drinks at lunch than at dinner.

Assessment Packet

Name \(\qquad\)
1. Fatima runs errands.
a. The clock to the right shows what time she leaves home. What time does she leave?
b. It takes Fatima 17 minutes to go from her home to the market. Use the number line below to show what time

Date \(\qquad\) she gets to the market.


Fatima leaves the market.
c. The clock to the right shows what time Fatima leaves the market. What time does she leave the market?
d. How long does Fatima spend at the market?

2. At the market, Fatima uses a scale to weigh a bag of almonds and a bag of raisins, shown below. What is the total weight of the almonds and raisins?

3. The amount of juice in 1 bottle is shown to the right. Fatima needs 18 liters for a party. Draw and label a tape diagram to find how many bottles of juice she should buy.
4. Altogether, Fatima's lettuce, broccoli, and peas weigh 968 grams. The total weight of her lettuce and broccoli is shown to the right. Write and solve a number sentence to find how much the peas weigh.

5. Fatima weighs a watermelon, shown to the right.
a. How much does the watermelon weigh?
b. Leaving the store Fatima thinks, "Each bag of groceries seems as heavy as a watermelon!" Use Fatima's idea about the weight of the watermelon to estimate the total weight of 7 bags.

c. The grocer helps carry about 9 kilograms. Fatima carries the rest. Estimate how many kilograms of groceries Fatima carries.
d. It takes Fatima 12 minutes to drive to the bank after she leaves the store and then 34 more minutes to drive home. How many minutes does Fatima drive after she leaves the store?

Name \(\qquad\) Date \(\qquad\)
1. Paul is moving to Australia. The total weight of his 4 suitcases is shown on the scale to the right. On a number line, round the total weight to the nearest 100 kilograms.

2. Paul buys snacks for his flight. He compares cashews to yogurt raisins. The cashews weigh 205 grams, and the yogurt raisins weigh 186 grams. What is the difference between the weight of the cashews and yogurt raisins?
3. The clock to the right shows what time it is now.
a. Estimate the time to the nearest 10 minutes.

Time Right Now

b. The clock to the right show Paul's departure time. Estimate the time to the nearest 10 minutes.

Departure Time

c. Use your answers from Parts (a) and (b) to estimate how long Paul has before his flight leaves.
4. A large airplane uses about 256 liters of fuel every minute.
a. Round to the nearest ten liters to estimate how many liters of fuel get used every minute.
b. Use your estimate to find about how many liters of fuel are used every 2 minutes.
c. Calculate precisely how many liters of fuel are used every 2 minutes.
d. Draw a tape diagram to find the difference between your estimate and the precise calculation.
5. Baggage handlers lift heavy luggage into the plane. The weight of one bag is shown on the scale to the right.
a. One baggage handler lifts 3 bags of the same weight. Round to estimate the total weight he lifts. Then, calculate exactly.

b. Another baggage handler lifts luggage that weighs a total of 200 kilograms. Write and solve an equation to show how much more weight he lifts than the first handler in Part (a).
c. The baggage handlers load luggage for 18 minutes. If they start at \(10: 25\) p.m., what time do they finish?
d. One baggage handler drinks the amount of water shown below every day at work. How many liters of water does he drink during all 7 days of the week?

6. Complete as many problems as you can in 100 seconds. The teacher will time you and tell you when to stop.
\begin{tabular}{|c|c|c|c|c|}
\hline \(3 \times 1=\) & \(2 \div 1=\) & \(\underline{L}=20 \div 10\) & \(2 \times 2=\) & 5 x \\
\hline x \(2=4\) & \(10 \div 5=\) & 10 x & \(\underline{=} 2 \times 3\) & \(=12 \div 4\) \\
\hline
\end{tabular}
\(4 \times 3=\ldots \quad 15 \div 5=\ldots 4=16 \quad=40 \div 10 \quad 2 \times 4=\)
\begin{tabular}{|c|c|c|c|c|}
\hline \(3 \times 4\) & \(4 \times\) & \(20 \div 4=\) & \(=10 \times 5\) & 25 \\
\hline
\end{tabular}
\(4 x^{\ldots}=20 \quad=10 \div 2 \quad \times 3=18 \quad 10 \times 6=\quad 30 \div 5=\)
\begin{tabular}{|c|c|c|c|c|}
\hline \(3 \times 6=\) & \(=24 \div 4\) & 5 x & \(\underline{=}=10 \times 7\) & \(14 \div 2=\) \\
\hline \(2 \times 7=\) & \(x 4=28\) & \(\underline{-}=40 \div 5\) & 10 x & \(\underline{=} 3 \times 8\) \\
\hline
\end{tabular}
\(24 \div 3=\quad 80 \div 10=\quad 36 \div 4=\quad 5 \times 9=\quad 2 \times \quad=18\)

Module 2:```

